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DYNAMICS AND STABILITY OF ELASTIC COSSERAT
CURVESt
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Detroit, Michigan

Abstract-A nonlinear dynamical theory of plane motions of a class ofCosserat curves is obtained and shown to
include a classical type elastica theory as a special case. The undeformed state of a simply-supported curve is
proved stable with respect to suitable metrics, provided the strain energy function is positive definite.

1. INTRODUCTION

NONLINEAR deformation theories of rods can be formulated by regarding a rod as a one
dimensional directed continuum, i.e. a curve with a triad of directors or deformable vectors
defined at each point of the curve. The deformation of this "directed" curve consists of
displacements of the points on the curve and independent stretches and rotations of the
directors. The directors can be interpreted as material elements in the cross section of a
rod and account for shearing, bending and twisting effects. The definition of a rod as a
curve with a triad of directors leads to a complete description of the strain in a rod, as
shown by Ericksen and Truesdell [1].

A nonlinear dynamical theory of elastic directed curves was developed by Whitman
and DeSilva [2], who postulated a Hamilton's principle, conservation of mass and invari
ance of the action density function under rigid body variations as governing the dynamical
behavior of elastic directed curves. These postulates were shown to yield a complete
dynamical theory, i.e. equations of motion, boundary conditions and nonlinear constitutive
equations. As a special case, the directors were constrained to be a rigid triad and a general
theory of Cosserat curves was obtained. The general theory of Ref. [2] can be considered
as a generalization of the statical theory of elastic directed curves presented by Cohen [3].

In this paper we further investigate the dynamics of Cosserat curves by restricting the
curve to plane motions, In Section 2 a consistent nonlinear theory is obtained and shown
to reduce to a classical type elastica theory by imposing the additional constraint that
the director frame rotate with the unit tangent vector to the curve. We then pass to a linear
theory and obtain a set of three linear displacement equations of motion. In Section 3
a definition of dynamical stability and a stability theorem due to Movchan [4] are stated.
We then construct a suitable energy functional which is valid for a stability investigation of
any general motion of an elastic directed curve. In Section 4 this functional is reduced to
the case of plane motions of a simply-supported Cosserat curve, and Movchan's theorem
leads to the result that the undeformed state of the curve is stable provided the strain
energy function is positive definite.

tThis work was supported by the National Aeronautics and Space Administration Research Grants NGR-23
006-47 and NGR 23-006-047-1.
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2. DYNAMICS OF PLANE COSSERAT CURVES

We consider here Cosserat curves, i.e. curves with rigid directors and restrict ourselves
to the case when these rigid directors are a unit orthogonal triad. The general equations
for this class of elastic Cosserat curves were derived by Whitman and DeSilva [2] and are
given by

(2.1)

(2.5)

OE oe
To; = PA-a , rno; pAeo;fJl; ::IF (2.2)

Yo; U l;fJ

Yo; = Ato; = do;. r, Fo;fJ AWo;fJ = do;. all (2.3)

IXo; = Bo;l!Il' Bo;ll = Aoo(jo;ll - Ao;fJ = BfJo;, (2.4)

In these equations p is the mass density per unit length of the deformed curve c, t is the
stress vector, m the couple stress vector, f the body force and I the body couple. The vector
v is the velocity of points on c, and n is the spin velocity of the rigid director triad do;.
The function E is the strain energy density, Y", and F"'1l are deformation measures, a: is a
generalized spin velocity, and the quantities A"'/h B"'fJ are measures of the inertia properties
of the rigid director triad. The notation n, (v) indicates arc differentiation with respect to
the undeformed and deformed arc lengths Sand s, respectively. The superposed dot denotes
the material time derivative holding S fixed. Finally, A = ds/dS is the stretch, t is the unit
tangent to c and r is the position vector of points on c. Greek subscripts take the values
1, 2, 3 and refer to anholonomic components of tensors with respect to the directors d""
e.g. T", = t. d",. The usual summation convention applies.

To describe the plane motions of a Cosserat curve, we choose a rectangular cartesian
coordinate system Xi and require that the curve c and two of its directors d l , d2 lie in the
XCX2 plane. Since the directors d", form an orthogonal triad, d3 always remains aligned
with the x3-axis. Except for the coordinate axes Xi' Arabic numeral subscripts will represent
anholonomic components, exclusively. Since the directors have a single rotational degree
of freedom, we can define their orientation by an angle cp which dl makes with the xl-axis.
Similarly, the orientation of the unit tangent t Can be specified by an angle 0 which t makes
with the Xl-axis. Hence, we have

t = (cos 0, sin 0,0)

dl = (cos cp, sin cp, 0)

dz = (- sin cp, cos cp, 0)

d3 = (0,0, 1).

~rom these representations we can show that the non-vanishing components of t", and

w"'ll are
t l = cos(O-cp), t 2 = sin(O-cp)

(2.6)
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Substituting equations (2.6) into (2.3) and (2.2), the non-zero deformation measures and
constitutive relations are:

Y1 = At 1 = Acos(0- q>),

Of
'1 = PA--:;-,

UY1

F21 = rp = -F12

Of-
'2 = PA--:;-,

UY2

(2.7)

(2.8)

Finally, the anholonomic components of the spin velocity n are

The preceding results imply the equations of motion become

0, 1 v ,r . .a;- q>'2 + PJ 1 = PV 1 - pq>V 2

II = tX1 -<Pa2

12 = tX2 +<pal

where

(2.9)

(2.10)

(2.11 )

(2.12)

Noting that the body couples 11 ,12 tend to deform the curve out of the plane of deformation,
we assume these couples vanish. Equations (2.10) then imply

(Bi 3 +B~ 3)<p 2 = O.

This equation is satisfied for arbitrary <p provided B 13 = B23 = O. This restriction on the
matrix B~p can be viewed as analogous to the requirement in classical beam and rod theory
that a plane deformation can occur only in a principal plane of the cross section.

At this point it is convenient to define a set of strains Z~, x~p which vanish in the reference
configuration:

X~p = F~p-D~. Dp

where R and D~ are the position vector and directors, respectively, in the reference con
figuration. We can evaluate the terms D~. R and D~. Dp above by defining angles 0, <I>
such that

0(8) = olt=o, <1>(8) = q>lt=o,
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12.13)
Dz . R = sin(E> <Il)

DZ .01 =<1> -OJ'Oz.

Without loss of generality we can take D j aligned with the tangent vector Rby choosing

These definitions lead to the expressions:

D 1 . R = cos(E> -<Il),

<Il = E>. (2.14)

where K is the curvature of the undeformed curve. The relevant strains then become

2 Z Yz, x = (jJ-K (2.1 5)

where we have defined x = X Zj = -X jz • Hence, the general equations for plane motion
of Cosserat curves become

(2.16)

2tz , x (jJ--K

t z sin(O - <pl.t j = cos(O-<p),

m
ot

p2-ox (2.17)

(2.18)

The couple stress equation (2.16h was obtained from (2.11) by dropping the subscript 3
from the appropriate quantities. To obtain a determinate theory in the sense that the
number of equations equal the number of unknowns, we must add the following equations
to the set (2.16) to (2.18):

l)xz . f)

= SIn {l

OS

Xj = vjcos<p-vzsin<p

Xz = Vj sin <p+vz cos <po

We note in passing that the above theory includes a nonlinear, classical type elastica
theory as a special case by requiring the director frame to rotate with the tangent vector t.
For this special case we have

<p = e, t z = 0.

The subscripts 1, 2 now refer to components along the tangent and normal to the curve,
respectively. The strains become

Zz 0, x = O-K == f1
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where b, J1 are the classical extension and bending measures, respectively. Hence, the
constitutive equations (2.17) become

Of, ,Of,
'1 = PA ob ' m = pA o,/

The above form of the constitutive relations for an elastica were obtained by Antman [5]
from the three-dimensional (nonlinear) constitutive equations of elasticity. We observe
that the shear stress '2 is indeterminate with respect to constitutive equations, but can be
determined from the equations of motion, which become

0'1 Y .'--f)'[2+P!1 = pV 1-peV2as
0'2 Y .'

~+e'1+P!2 = pV2+peV1

am ..
a;+'2+pl = pBe.

(2.19)

If the inertia terms are omitted from equations (2.19), we recover the equilibrium equations
of the plane elastica (cf. Love [6]). Hence, we see that the model of a Cosserat curve yields
a nonlinear theory of the plane elastica as a special case.

In order to develop the linear theory of a plane Cosserat curve, we define a displacement
vector u and a set of director displacements 9" by the equations

r = R+u, (2.20)

(2.21 )

We consider u, 9" and their first derivatives with respect to arc length or time to be infini
tesimal such that all second or higher order terms in these quantities can be neglected in
the general equations. Equations (2.3), (2.12) and (2.20) then imply that the linearized
strains are

l'C"p ~ 9".Dp +D".9p.

Since the directors are assumed to undergo an infinitesimal rotation, we can define a small
angle IjJ = qJ - e such that the director displacements are given by

(2.22)

Also, within the linear theory the displacement vector u can be expressed as

Equations (2.22) and (2.23) imply the strains become

(2.23)

x = $ = (P-K. (2.24)

The rotation of the tangent vector t can be defined in terms of a small angle X such that
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(2.28)

This representation of t leads to the following expressions for the stretch 1 and the angle X:

OUI 8uz
A.~I+as-Kuz, X= 8S+ Ku1 ' (2.25)

Comparing (2.24) and (2.25), the strains ZI' Zz can be written as

ZI = A-I, Zz = X-t/J.

For the purpose of developing linear constitutive relations we assume the strain energy
function [; is given by

(; = !crxpYfrxYfp (2.26)

where crxP is a constant, symmetric matrix of material parameters and Yfrx is the set of strains
(ZI'ZZ'X). Equations (2.17) and (2.26), together with the conservation of mass PA = Po,
yield the constitutive equations

<I = POClPYfp, <z = PoCzpYfp, m = POC3PYfp· (2.27)

Using the preceding results in equations (2.16) and assuming constant initial density, we
can show that the linear displacement equations of motion are

Cll~(~~ -KUz) +C120~(°oi-t/J +KU1) +C13 ~~~

-K[czz (°o? -t/J+ KU 1) +C 12(°o'§- KUz) +C23 ~~] +II = O;t~l

c21:s(0;;-t/J+KU 1) +C12:s(°o~-KUz) +C23~~~

[ (
OUI ) (OU2 ) Ot/J] OZUz+K C11 as-Kuz +C12 as t/J+ KU l +C13 as +Iz = otZ

02t/J a(oUI ) a(ou z ) (OU2 )C33oS2+C13oS as-Kuz +C23oS 8S t/J+Ku1 +C21 as-t/J+Ku1

+Clz(OU1_ Kuz ) +CZ3
0

t/J +/ = Bi!...~'k.as as 8t2

Recalling (2.23) and the fact that the directors D I , Dz were chosen along the tangent and
normal to the undeformed curve, the displacements Ul' Uz represent extensional and
transverse displacements of the curve. Thus, equations (2.28) imply that extension, flexure
and rotation of the directors are interacting effects. This statement remains valid even
when the curve is initially straight, i.e. when K(S) = O.

As a special case, we assume that the matrix crxp is diagonal with elements C11 = a,
czz = b, C33 = c. Then for an initially straight curve, equations (2.28) reduce to

o2U1 o2U1
a oS2 +11 ot2

(2.29)
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This special theory implies a partial decoupling ofeffects, i.e. extensional motion is governed
by a one-dimensional wave equation. However, flexure of the curve and rotation of the
director frame remain coupled. The rotational angle t/J can be eliminated from equations
(2.29h,3 yielding a single equation for the transverse displacement U2' Hence, for zero
body forces we find

04U2 ( c) 04U2 02U2 B 04U2
C OS4 - B+[; OS20t2 + ot2 +b" ot4 = O. (2.30)

This equation has the same form as the classical equation for transverse displacement of
Timoshenko beam theory, which takes into account shear deformation and rotatory inertia.
An equation equivalent to (2.30) was also obtained by Green, Laws and Naghdi [7J from
their linear theory of straight elastic rods, based on a two director model of a rod.

3. STABILITY OF GENERAL MOTIONS OF DIRECTED CURVES

Within the context ofstability analysis, we distinguish between two motions ofa directed
curve. The first is the undisturbed motion, i.e. that motion which is assumed known and
the stability of which is to be investigated. The second is any neighboring motion called
the disturbed or perturbed motion. We introduce the concept of a metric functional,
i.e. a non-negative measure of "distance" between the two motions. As used here, the term
distance has a very general connotation and may refer to velocity change, temperature rise,
stress increase or any other quantities which serve to distinguish the change in the undis
turbed motion. Assuming the undisturbed motion of the directed curve undergoes a
disturbance at some time to, we define a metric M0 as a measure of this disturbance. t
A metric M(t) is then defined as a measure of the disturbance at any time t > to' We assume
the metrics Mo, M(t) are defined such that they vanish only when evaluated along the
undisturbed motion of the curve. The undisturbed motion of the directed curve is then
said to be stable with respect to the metrics Mo, M(t) provided the following conditions
are satisfied:

(a) M(t) is a continuous function of t.
(b) M(t) is continuous with respect to Mo at t = to, i.e. given any €1 > 0, there exists

a 15 1(€1' to) > °such that at the initial time to, Mo < 15 1 implies M(to) < €1'

(c) Given any €2 > 0, there exists a 152(€2' to) > 0 such that Mo < 152 implies M(t) < €2

for t > to.
This definition and the theorem which follows are due to Movchan [4].

'THEOREM. The undisturbed motion is stable with respect to the metrics Mo, M(t) if
and only if there exists in the neighborhood M(t) < R, R > °of the undisturbed motion
a functional V(t) such that

(i) V(t) ~ O.
(ii) V(t) is a non-increasing function of t.

(iii) Given any €1 > 0, there exists a 15 1(€1' to) > 0 such that Mo < 15 1 implies V(to) < €1'

(iv) Given any €2 > 0, there exists a 152(€2) > 0 such that M(t) ~ 152 implies V(t) ~ €2'

Movchan also proved that the stability ofthe undisturbed motion according to the definition
given implies its uniqueness in the sense that if Mo = Oat t = to, then M(t) must vanish
for all t > to.

tWe suppress the functional dependence of the metrics and other functionals on the quantities which
characterize the distance between the two motions.
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We now consider an appropriate functional V(t) for general motions of elastic directed
curves. The integral form of energy conservation is (see Ref. [2J)

(3.1 )

where Wa = da and ha, Jla are the body force and the stress vectors associated with the
directors. We assume the curve c undergoes a disturbance at time to and that for t > to
there exists a perturbed motion defined by the functions

r* = r*(s*, t), (3.2)
taking c into c* such that

s* = s*(s, t) (3.3)

where s* is the arc length of the curve in the configuration c*. Applying the conservation
of energy (3.1) to the perturbed motion, as well as the conservation of mass and the mapping
(3.3), we obtain

(3.4)

where the notation ( )* indicates the enclosed functions are defined along the perturbed
configuration c*. Subtraction of (3.1) from (3.4) yields the result

d
dt K(t) - H(t) = 0 (3.5)

where K(t) and H(t) are defined by

K(t) = i [t(v* . v* -v . v)+!AaP(w: . w; -wa · wp) +(c* -c)Jp ds (3.6)

H(t) = f [(f* . v* -f. v)+(h*a. w: _ha. wa)Jp ds + [(t* . v* -t. v) + (J.1*a . w: _Jla . Wa)J/
S2

c s,

(3.7)

We now define a Movchan-Liapounov functional V(t) to be

V(t) = K(t) - fH(t) dt. (3.8)

By virtue of the differential equation (3.5) we see that V(t) is constant. Hence this functional
satisfies condition (ii) of Movchan's stability theorem and is at least a candidate functional
for stability analysis.

It is often convenient to introduce displacement functions u, Oat according to the
equations

r* = r+u, (3.9)

t Note that these displacements in general have a different meaning than those introduced by (2.20).
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Using equations (3.9), tre quantities K(t) and H(t) become
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(3.10)

(3.11 )

K(t) = Ie [~Oti. v+li.u)+!AaP(2wa.9p +9a. 9p)+(E*-E)]pds

H(t) = Ie [(f*-t).v+f*.Ii+(h*a-ha).wa+h*a.9a]pds

I
s,

+[(t*-t). v+t*. Ii+(p*a_pa). wa+p*a. OJ .
s,

Hence, equations (3.10) and (3.11)express V(t) in terms ofdisplacements and velocities from
the undisturbed motion of the directed curve. We note that no assumptions have been made
up to this point regarding the loading functions.

The special case of dead loading yields a simplification in the functional H(t). By dead
loading we mean that the body forces and end forces in the disturbed motion remain
unchanged from their values in the undisturbed motion. Thus, for dead loading

f* = f, h*a = ha along c

and H(t) becomes

H(t) = f (f. u+ha . Oa)pds+(t. Ii +pa. 9a)ls2.
c s,

If in addition to the assumption of dead loading, the undisturbed motion is restricted to be
an equilibrium configuration, we can show that V(t) takes the form

V(t) = f [iU.U+!AaP9a.9p+(E*-E)]Pds-f (f.U+ha.Oa)PdS-(t.u+pa.Oa)/s2. (3.12)
C C S1

Finally, when the equilibrium configuration is the natural or unloaded state, the require
ment that VU) be non-negative reduces to

{PE*dS:2:: O.

This condition imposes a restriction which the strain energy function must satisfy for the
stability of the disturbed motion. An analogous condition for three-dimensional elasticity
was presented by Knops and Wilkes [8].

4. STABILITY OF A PLANE, SIMPLY-SUPPORTED COSSERAT CURVE

In this application of Movchan's theorem, we restrict ourselves to the case of linear
motions from the undeformed state of the curve. It can then be shown that the general
functional V(t) defined by equations (3.8), (3.10) and (3.11) can be reduced to the form:

V(t) = {L (iuaua+jBifr2+ E)podS- fd{{L (faUa+lifr)PodS+('taUa+mtfr)I:J (4.1)



420 A. B. WHITMAN and C. N. DESILVA

(4.2)

where e is given by (2.26) and where L is the length of the curve in its natural state. It can
easily be verified that the time rate of V(t) above vanishes by virtue of the equations of
motion (2.28). For simplicity we assume that the body forces fa, I vanish and that the un
deformed state is perturbed by imparting a set of displacements and velocities to the
system at time t = 0. Moreover, we treat the case of zero initial curvature K. Hence, the
governing equations become

a2UI a (aU2 ) a21/! a2UI
ClI as2 +C12 as as-I/! +c13asi = at2

a(au2 ) a2UI a21/! a2U2
Cn as as-ljJ +C12 asz +C23 asz = at2

(PI/! a2UI a(aU2 )
C33 asz +C13 as2 +C23 as as-I/!

(
au2) au, at/; a21/!

+cn as-ljJ +c,z'as +C23 as = B at2'

A simply-supported Cosserat curve is defined by the boundary conditions

UI(O, t) = U2(O, t) m(O, t) = 0

u,(L, t) = uz(L, t) = m(L, t) = O.

The functional V(t) takes the form

V(t) = t S: (Ii"u" +BIF +C"P'1,,'1p)Po dS

where

(4.3)

(4.4)

Mo == V(O),

To apply Movchan's theorem, we choose the following metric functionals

M(t) =L(u"u,,+ljJ2)dS. (4.5)

We assume that u" and ljJ are continuous functions of t so that M(t) is continuous. The
definition (4.5)1 trivially satisfies condition (iii) of Movchan's theorem. We now make the
assumption that the strain energy function is a positive definite quadratic form, i.e. there
exists a positive constant C such that

C"p11,,'1p ~ C'I]"'I],,.

Hence, noting that the inertia coefficient is positive, we obtain the estimate

fL [(au)2 (au )2 (al/!)2]V(t) ~ tPoc Jo a; + a; -ljJ + as dS.

Performing the change of variables

(4.6)

(4.7)

(4.8)
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inequality (4.7) becomes

Vet) ~ !pocmin(1, ~2) f [(a~lr+ (a~2 -~r+ (~~rJ d'. (4.9)

Expanding the second term in the above integrand, integrating by parts and rearranging,
we can show that (4.9) takes the form

1 . ( 1) (I [(au 1)2 (au2)2 2 2J
V(t)~"2Pocmml'L2 Jo 8f +8f +~-U2 d'.

By an application of Schwarz's inequality it follows easily that

LI

(aa~'r d~ ~ 2f U;R,t)d'.

Hence, applying (4.11) to (4.10) and returning to the original variables, we obtain

Vet) ~ C1M(t)

where

(4.11)

(4.12)

(4.13)

Inequality (4.12) implies that conditions (i) and (iv) are satisfied. Since by definition Vet) is
constant, inequality (4.12) and the definition of M o imply that

1 1 1
M(t).$; -Vet) = -V(O) = -CMo· (4.14)

C I C1 I

Hence, we have shown that the undeformed state of a simply-supported Cosserat curve is
stable, provided the strain energy function is a positive definite quadratic form. Moreover,
the solution to equations (4.2) under arbitrary initial conditions is unique. We note that
(4.5) and (4.14) imply that the displacements u~, ~ are small in the average sense of M(t)
for all t > 0 when the initial energy imparted to the system is small.

A stability analysis can also be given in this example using the metric

M(t) = f: (u~ua+~2+uaua+t/t2)dS

where Ua , ~ are assumed to be continuously differentiable functions of time. Then corres
ponding to inequality (4.12) we can show that

Vet) ~ C\M(t)

where C1 is given by (4.13) with c replaced by min (1, B, c). A positive definite strain energy
function is again a sufficient condition for the stability of the undeformed state of the curve.
Stability with respect to M(t) implies the stronger result that the velocities, in addition to the
displacements remain small in the average sense of M(t) for all t > O.

Our result obviously remains valid for the special case when caP is a diagonal matrix, i.e.
when the governing equations are given by (2.29) with zero body forces. This case is also
included in the work of Green, Knops and Laws [9J, who investigated the stability of an
initially straight rod subjected to a simple extension.
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A6CTpaKT-Onpe,nCJIlieTCli HeJIHHeHHali )l.HHaMwlecKali TeopHli nJIOCKHX )l.BHlICeHHH KJIaCCa KpHBhlX

Koccepa. B Ka'l.ecTBe CnellHaJIhHOrO CJIy'l.all, OHa 3aKJIIO'l.aeT KJIaCCH'l.ecKHH THn TeopHH ynpyrocnr. D:oKa

3blBaeTClI, 'ITO He,nep$opMHpOBaHHoe COCTOllHHe CBOOO,nUO onepToii: KpHBOii: JlBJIlieTCli YCTOn'lHBOe no

OTHoweHHIO K COOTBeTCTBYIOWHM MeTpHKaM, ecJIH TOJIhKO $YHKllHlI 3HeprHH ):\ecPopMal\HH nOJIOllCHTeJIBHali.


